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We consider some models of classical statistical mechanics which admit an 
investigation by means  of the theory of dominant  ground states. Our  models are 
related to the Gibbs ensemble for the multidimensional SOS model with sym- 
metric constraints I~xl ~< m/2. The main result is that for fl ~> fl0, where fl0 does 
not depend on m, the structure of thermodynamic phases in the model is deter- 
mined by dominant  ground states: for an even m a Gibbs state is unique and 
for an odd m the number  of space-periodic pure Gibbs states is two. 

KEY WORDS: Random surfaces; SOS model with symmetric constraints; 
dominant  ground states. 

1. INTRODUCTION:  THE MODELS UNDER C O N S I D E R A T I O N  

The present work has arisen from attempts to understand the picture of 
low-temperature phase transitions in the following hard-core lattice model. 
Suppose that at sites of the v-dimensional cubic lattice Z v (the dimension 
v is always supposed to be ~>2) there are placed classical spins taking 
values 0 ..... m. A spin configuration is given by t /= {t/x , x EZ v} with 
r/X = 0,..., m. The site-site interaction is nearest neighbor and is reduced to 
a hard-core threshold repulsion: the value t/x + t/x, for any pair x, x' of 
nearest-neighbor sites should not exceed m. The statistical weight of a con- 
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figuration 4 r/(V) in a finite volume V c Z  ~ is z N("(v)), with z ~>0 a fugacity 
of the system and N(V) the total  sum Zx~vr /x .  The low-tempera ture  
regime corresponds  here to large values of fugacity. 

Such a model  natural ly appears  in the theory of communica t ion  
networks  (see, e.g., ref. 1) and in the theory of neuron  networks  (see ref. 2). 
We think, however,  that  this model  is interesting f rom the s tandpoint  of 
statistical mechanics  as well: it is formula ted  in simple terms and has some 
peculiar features. 

G r o u n d  states of the model  are close-packing configurations. These 
are simply chessboards  and may  be labeled by an index k = - m / 2 ,  
- m / 2 +  1,..., m/2 related to values qx taken at the points of "even" and 
"odd"  sublattices: 

t/(k) m 
= ~ + k, if x is even 

(k~ =----m k, i f x  is odd 'Ix 2 

(1.1) 

[a  point  x = (xl,..., x v) e Z v is called even if the sum Z~_ 1 Ixil is even, and 
odd otherwise] .  

The analysis of the model  shows that  not  all of those ground states 
create t he rmodynamic  phases. The number  of phases equals one for m 
even, whereas the number  of space-periodic pure  phases is two for m odd. 
This is established by means  of the theory of dominan t  ground states 
( D G S )  developed in refs. 3-5 (see also relevant references cited in these 
papers).  

The model  just  considered may  be treated as a "subensemble"  of the 
well-known SOS model.  In the SOS model,  a configurat ion is determined 
as a function ~b: Z u --* Z 1, or, equivalently, as a surface formed by horizon- 
tal and vertical v-dimensional  unit  "plaquet tes"  in Z ~ + 1. The Hami l ton ian  
in a finite volume V c Z v reads 

H(~b(V)) = Y, l~b~- ~bx,I (1.2) 
( x , x ' ) c  v 

The sum is extended to all (unordered)  pairs (x ,  x ' )  of neares t -neighbor  
sites of ZV; ~bx denotes the value of ~b at x ~ Z v. We notice that  due to the 
invariance p roper ty  of the Hami l ton ian  (1.2) wrt shifts ~b ~--~ ~b+const ,  we 
can assume that  our  functions ~b take values f rom a shifted lattice 

4 In speaking of configurations or surfaces (see beldv~), we use sometimes the argument V to 
indicate the volume where they are considered. When it is clear (or immaterial) what volume 
is in mind, this argument is omitted. 
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Z l+cons t .  To pass from a configuration t/ of the previous model to a 
surface ~b, we use the following rule: 

Cx=k,  if r lx=q~ k), x e Z v  (1.3) 

where r/~ k), k =  - m / 2 ,  - m / 2  + 1 ..... m/2, is defined in (1.1). The equivalent 
formula is given by 

~bx= - q x  ( - 1 )  IX1, x e Z  v (1.3a) 

and the inverse formula by 

m 
t/x = ~ -  ( -  1)1~1 ~bx, x E Z  v (1.4) 

For an even m the function ~b defined by (1.3), (1.3a) takes integer and for 
an odd m half-integer values between - m / 2  and m/2. 

The ground states of the Hamiltonian (1.2) are simply constant 
surfaces ~b(k): 

q~(k) = k, x ~ Z  v 
x 

It is easy to check that for r /and ~b related by (1.3)-(1.4) and for any k the 
following equality holds: 

Z N(tl) --N(rl(k))= exp{ --/3 [H(q~) -- H(~b(k)) ] } 
( 

with/3 = - (1/2v)In  z. Notice that not every surface ~b may be obtained in 
the rhs of the formulas (1.3), (1.3a). Namely, ~b must necessarily obey the 
following two constraints. We first notice the aforementioned constraint: 
for any x e Z v 

m 
l~bx[ ~<~- (1.5) 

Another constraint is that for any nearest-neighbor pair (x, x ' )  with an 
even x (and hence, with an odd x'), 

~b~ ~> ~bx, (1.6) 

The last constraint leads to certain simply formulated geometrical restric- 
tions which will be discussed later. 

The results on the original model which have been briefly mentioned 
may be immediately reformulated in terms of the SOS model with the 
restrictions (1.5), (1.6). Namely, if/3 is large enough, then, for an even m, 
a unique phase of the model is created by the ground state ~b (~ and for an 
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odd m there exist precisely two space-periodic pure phases which are 
created by the ground states ~b (+1/2) 

It turns out that the phase transition picture in the SOS model with 
the constraints (1.5), (1.6) is the same as in the model with only the one 
constraint (1.5). The last model was discussed in ref. 6, where such a 
picture has been conjectured (following an earlier paper(V/). 

The present paper contains the proofs of the results just mentioned, for 
both models. For  the sake of simplicity, we discuss in detail the case of the 
second model only: the change needed to cover the first one is outlined 
explicitly and may be easily worked out by the reader. It is worth noticing 
that our results are valid for ri i> rio, where rio depends on v, but not on m. 

As was said before, the method of proof is based on searching and 
investigating DGSs of a model under consideration. We study a so-called 
ensemble of low-energy excitations of a ground-state surface; this is the 
subject of Section 2. As a result, we conclude that the surfaces ~b (~ and 
~(+1/2) which are the farthest ones from the bounding hyperplanes ~b (-+m/21 
minimize the free energy of such an ensemble. In principle, the results of 
Section 2 allow us to reduce the problem of proving the assertions stated 
to verifying conditions formulated in ref. 4. However, we have preferred to 
devote a separate part  of the paper, Section 3, to a direct proof. This is 
motivated by two reasons. First, we control that all the constants involved 
are uniform in m. Second, we use a slightly different technique, which was 
proposed in ref. 8. We believe that this technique is sometimes more con- 
venient. An example is a short proof of a so-called "strip" theorem ~9) which 
is the extension of a result from ref. 10 to the cases under consideration. 

2. T H E  M A I N  R E S U L T  A N D  THE BASIC E S T I M A T E  

As said in the previous section, we focus on the SOS model with the 
only constraint (1.5). Recall that for m even, a function ~b takes integer 
values, and for m odd, half-integer ones. It is convenient to treat the value 
space as Z 1 + ~c, where ~ is zero for an even m and one-half for an odd m. 
The main result is given by the following theorem. 

T h e o r e m  2.1. There exists a constant rio = rio(v) < oe such that for 
any m and any ri ~> rio the following assertions hold true: 

(i) If m is even, then the model possesses a unique Gibbs state which 
is a small perturbation of the zero ground-state surface ~b (~ 

(ii) If m is odd, then the set of space-periodic extremal Gibbs states 
contains precisely two elements, phases which are small perturbations of 
_+1/2 ground states ~b(-+m); those Gibbs states are transformed into one 
another by the symmetry mapping ~b ~ -~b. 
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The same assertion holds for the SOS model with the two constraints 
(1.5) and (1.6). 

As usual in the theory of DGSs, the crucial part in the proof of 
Theorem 2.1 is studying a gas of low-energy excitations around a given 
ground state and then comparing corresponding "reduced" partition 
functions for different ground states. This will enable us to find DGSs of 
the model under consideration. The comparison is performed in 
Lemma 2.2. 

Geometrically, every surface ~b(V): V ~ ( Z I + ~ : )  on a finite volume 
V c  Z ~ is composed of vertical "walls" and horizontal "ceilings." Horizon- 
tal ceilings are formed by unit horizontal v-dimensional plaquettes with 
centers at points (x, ~bx)e ZVx ( Z l +  to), and vertical walls by unit vertical 
v-dimensional plaquettes which are projected onto those (v-1)-dimen- 
sional plaquettes of the dual lattice Z v = ( Z I + I / 2 )  v which separate 
nearest-neighbor points x, x '~  Z ~ with ~bx r q~x'- 

Vertical wails are decomposed into "signed cylinders": each cylinder 7 
is determined by a contour ~=~7(7) (the base of the cylinder) and an 
integer l =  l(7) (the signed length of the cylinder). A contour is defined, as 
usual, as a connected set of (v-1)-dimensional plaquettes of the dual 
lattice Z v such that, for any (v-2)-dimensional  plaquette of the contour, 
the number of ( v -  1)-dimensional contour plaquettes passing through it is 
even. The sign of l(7) indicates in which of the two vertical directions a 
cylinder 7 is "growing." 

The exterior and interior of a cylinder are understood here in terms of 
the basic contour. 

Given a surface ~b, the corresponding collection of cylinders satisfies a 
consistency condition given below (we always have in mind "maximal" 
cylinders by forbidding two cylinders to have coinciding contours). As is 
readily seen, any consistent collection of cylinders determines, in a unique 
way, a surface in a volume with given boundary condition. 

A collection of cylinders {7} is called consistent if the following two 
conditions are fulfilled. (I) For any pair 7~, 72 of cylinders from the collec- 
tion having the same sign, the interiors of the corresponding contours 
~a, ~2 either lie at a mutual distance > 1 or are embedded into one another 
(the contours ~ ,  72 may themselves have common plaquettes in this case). 
(II) For any pair 7~, 72 of cylinders from the collection having opposite 
signs, the interiors of the contours ~1, ~72 either do not intersect (i.e., lie at 
a mutual distance >/1) or are embedded into one another, and in this case 
,the contours ~7~, 72 do not intersect. 

Associated with a cylinder 7 = (~7, l) is the statistical weight 

w(7) = exp( - /3 11711) (2 1 ) 
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where 11711 is the number of vertical v-dimensional plaquettes in 7: 

II~ll = 1~71 Ill (2.2) 

1~7[ denotes the number of (v-1)-dimensional  plaquettes in the basic 
contour ~7. Notice that for any surface ~b in a finite volume V c Z  v its 
statistical weight reads 

exp[-f lH(q~(V))]  = ~I w(7) (2.3) 

where the product is extended to cylinders from the corresponding consis- 
tent collection. 

It is time to point out the difference between the two models under 
consideration. First, the model with the constraints (1.5) and (1.6) admits 
only contours where any pair of adjacent (v - 1 )-dimensional plaquettes is 
mutually orthogonal. Second, the definition of a cylinder must be modified 
for this model: this is now a quadruple 7 = (~, l, 5, 5') where ~ and l are as 
before and e, 5' = _ 1 indicate the signs of an external and internal ground- 
state surface separated by the contour 7. This is caused by the fact that 
condition (1.6) does not admit cylinders (7, l, e, 5') with ee '= - 1  and with 
the property that ( - 1 ) r x t C e  for some (or, equivalently, for any) point 
x e Z v which adjoins a plaquette of the contour ~7 from the exterior. 

Therefore, the above condition of consistency should be completed 
with the following requirement. (III) For  any pair 71, 72 of cylinders from 
a collection {7} such that the basic contours 7i, 72 are not separated by 
any third contour ~ being the base of a cylinder from the same collection, 
(a) if ~71 and ~2 are mutually external (i.e., do not lie one inside the other), 
then e(71)=e(72), and (b) if the interior of 3~2 contains that of ~1, then 
e(71) = e'(72), and if, on the contrary, the interior of 71 contains that of 92, 
then 5(72) = e'(71). 

This difference between the two models exhibits itself every time when 
we need to estimate from above the number of contours ~ with a fixed 
value of [~71 passing through a fixed plaquette. In both cases, however, this 
number is bounded by exp(e [~[), where the constant c depends only on the 
dimension v. Modulo this fact, the arguments in the proof of Theorem 2.1 
are identical to those in the proof of the similar assertion for the model 
with the constraints (1.5), (1.6). 

Let us fix now a finite volume V c Z  v and a boundary condition 
~b(k)(V~). We extract, from the Gibbs ensemble in V with this boundary 
condition, a reduced subensemble formed by (signed) cylinders 7 with 

rn 
diam ~ ~< 10 ~- 2v (2.4) 



Random Surfaces wi th  Two-Sided Constraints 117 

(the number 10 plays here no particular role, of course). This reduced 
ensemble corresponds to a gas of low-energy excitations of the ground state 
~b (k) in the volume V. 

Let Z(~)(V) denote the partition function of the reduced ensemble in 
V with the boundary condition ~b(k)(VC). Let Z( - ) (V)  denote the partition 
function Z(~ for m even (when ~c = 0) and any one of (equal) partition 
functions Z(+I/Z)(v) for m odd (when ~c = 1/2). Our aim is to write down 
a (convergent) polymer expansion for log Z(k)(V) and then to compare 
coefficients for different k values. 

We notice that, according to (2.3), the partition functions Z(~)(V) 
admit the following cluster representation: 

Z(k)(V) = ~ l~ w(7) (2.5) 

where the sum is extended to consistent collections of cylinders which obey 
the boundary condition. 

In auxiliary assertions which follow we deal with various positive 
constants which do not depend on m, hut depend on v. Those constants 
are denoted c, c', etc., though their values can change from one place to 
another. We also omit the sentence that fl is >lflo, where flo < oe depends 
on v but not on m and k. 

Lemma 2.2. For any m and any k with 0 < [k[ ~ m/2, the following 
bound holds true: 

Here and below [ Vr denotes the number of points x e V. 

Proof of Lomma 2.2. For definiteness, let us assume that m is even. 
First, consider the case where Ikl/> m/3. Notice that the partition functions 
Z(k)(V) and Z(~ have a "common" part which is given by the contribu- 
tion of those surfaces ~b which obey [r [ <<.m/2-[k[/2 [for Z(k)(V)] 
and I~bx+k/21 <~m/2-[kl/2 [for Z(~ x e  V. These surfaces are trans- 
formed into one another by a vertical shift. The common part is denoted 
Z(k'~ 

To analyze distinct parts of our reduced partition functions Z(k)(V) 
and Z(~ we introduce the notion of a wedding cake. This is a consis- 
tent collection rc of cylinders of a fixed sign, which satisfies the following 
additional condition. The collection n contains a unique cylinder 7 with 
maximally-external contours '7 [we denote them, respectively, ~e(rc) and 
~e(~)], and for all maximally-internal contours ~' from ~, the sum 52i/(7i) 
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is the same [we denote it /(n)]. The sum is taken over the cylinders "2i 
whose basic contours ~i are intersected by a path on Z v connecting ~Te(Tr) 
with ~7' (included). 

In physical terms, all the "summits" (or "holes") of the surface 
representing a wedding cake (or, briefly, a cake) must be of the same 
"height" (or "depth"). The statistical weight of a wedding cake rc reads 

w(~z)= l~ w(7) (2.7) 
7 ~ z  

The product is taken over all cylinders 7 from z. 
In a similar way one can introduce a more general notion of a semi- 

cakei this is a consistent collection a of cylinders, possibly, of the both 
signs, satisfying the aforementioned conditions (which mean uniqueness of 
the maximally-external basic contour and equality of the absolute altitudes 
of maximally-internal cylinders). We shall use for semi-cakes similar 
notations ~ (a )  and l(a). The statistical weight of a semi-cake is given by 
the formula identical to (2.7). 

The concepts of a cake and a semi-cake are useful because, on one 
hand, they enable us to describe various possible ways for our surfaces to 
reach a given level, and on the other hand, both cakes and semi-cakes have 
a "summability" property, as shown by the following lemma. Let us call 
two semi-cakes congruent if they may be transformed into one another by 
a horizontal space shift and vertical reflection. Clearly, w(a l )=  w(o'2) for 
any pair of congruent semi-cakes al and a2. 

L e m m a  2.3. Given 7, d > 0 ,  there exists /31 =/31(v, 3/7)< oo such 
that for any/3 1>/31 the following bound holds true: 

w(a) <~ exp[ - (/3 - c) l'2v] (2.8) 

The sum is taken here over all congruence classes of wedding cakes 
which satisfy the following two conditions: (i) diam ~e(a)~< d, (ii) ]/(cr)l >~7. 

Proof of Lomma 2.3. Due to our restrictions on the diameter 
diam ~e(a) and the length l(a), it is possible to fix, in a standard way, a 
family of horizontal v-dimensional plaquettes containing at most Ilall ~/~r 
plaquettes which, together with the vertical plaquettes of the cake a, form 
a connected plaquette hypersurface. Here II~rll denotes the total number of 
the vertical plaquettes in a. The number of different semi-cakes cr with a 
fixed value of flail is growing exponentially with II~rlL, and hence the sum in 
the lhs of (2.8) is bounded from above by a sum of a geometric progression. 

We return now to the proof of Lemma 2.2. It is convenient to use the 
following 
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Proposition 2.4. The following bound holds true: 

Proof of Proposition 2.4. Let us introduce a procedure of affiliating 
(gluing) a semi-cake ~ to a surface ~b. The necessary requirement is that 
the whole collection of cylinders 7 from both ~ and ~b satisfies the con- 
sistency condition (see above). The result of affiliating is a new surface ~b' 
such that its collection of cylinders is the union of the collections of 
and ~b. 

Notice that any surface ~b contributing to Z(k)(V) may be viewed as a 
result of affiliating, to a surface ~ which contributes to Z(k'~ a family 
(possibly, empty) of semi-cakes {a} with (m/2) + 1 ~ [l(~)[ ~< (m/2) + Ik] 
and - s i g n  l(~) = sign k. To verify this, it is enough to define, for a surface 
~b contributing to Z(k~(V), a "reversible" procedure of "erasing" long semi- 
cakes from ~b in such a way that the resulting surface will contribute to 
Z(~'~ For example, such an erasing procedure may be defined as the 
iteration of the following two-step operation: (a) partitioning the surface 
into "maximal" semi-cakes, (b) deleting cylinders of those maximal semi- 
cakes which have the lengths with the absolute value exceeding (m/2). The 
procedure is ended when the resulting surface will not contain anymore 
maximal cakes subjected to erasing (in which case the surface will 
contribute to Z~k'~ 

Each affiliating leads to multiplication of the statistical weight of the 
underlying surface ~ by the product ]-I w(a). Taking the sum over all ways 
to affiliate a family of wedding cakes to a given surface ~ gives a factor 
which does not exceed 

The sum Z w(a) in the lhs is the same as in Lemma 2.3. 
The next step in the proof of Lemma 2.2 is the following result. 

P r o p o s i t i o n  2.5. Let Z{k~(V) denote the part of the sum Z<~)(V) 
which contains the contributions of those surfaces ~ for which 
# {xe  V: ~ x = k }  <~ ]VI/2. Then 

2~k)(V) ~< exp I -  ( /~-  c) ~ 1  (2.11) 
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Proof of Proposition 2.5. For each surface ~ contributing to 
2(~/(V), the collection of its vertical cylinders may be completed to a con- 
nected set of v-dimensional plaquettes by adding at most I VI horizontal 
plaquettes. On the other hand, the same surface ~ contains at least I VI/2 
vertical plaquettes. The quantity 2(k)(V) does not exceed thereby the sum 
of a geometric progression 

exp(-fln)(c')2" <~ exp ~- ( f l - c )  l~]  
n = ] V l / 2  

n is the number of vertical plaquettes in q~. 
We now establish a lower bound for Z(~ 

P r o p o s i t i o n  2.6. The following bound holds true: 

(2.12) 

E ( m)l Z(~ Z(k'~ c [V[ exp - f l ~ - 2 v  (2.13) 

Proof of Proposition 2.6. As follows from Proposition 2.5, for fl 
large enough, 

z(k'~ 2~k>(v)/> �89176 

Furthermore, after affiliating, to a surface ~ contributing to the difference 
Z(k'~ - Z(k)(V), a collection of congruent cylinders 7 with sign 7 = sign 
k which have, as a base, unit contours and have the length m/2- k + 1, we 
still obtain a surface which contributes to Z(~ but not to 2(k). The sum 
over all such collections is greater than 

>~{exp[-flH(~)]}exp[c'lVlexp(-f162v)] 

The assertion of Proposition 2.6 now follows immediately. 

To finish the proof of Lemma 2.2 for [k] ~> m/3, it suffices to collect the 
results of Propositions 2.4-2.6: 

Z(k)(V) ~< Z(k'~ exp {c' 1 [V] exp[ -- (fl -- cl)(m/2 + 1) 2v] } 

Z(~ Z(k'~ exp[-c' IV[ exp(-f l(m/6) 2v)] 
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Let us now turn to the case 0 <  Ikl <m/3. We shall treat partition 
functions Z(k)(V), Pkl <~ m/3 (including k = 0), as small perturbations of the 
partition function Z~)(V) corresponding to the standard SOS model 
[without the constraint (1.5)] with the zero boundary condition. For the 
standard SOS model, for any finite volume V one is able to write down a 

7(0) g convergent (for fl>>-flo) polymer expansion for log Loo ( ) in terms of 
"polymers" composed of cylinders. As usual, by a polymer we mean here 
(and below) a "connected" collection of cylinders (or more complicated 
geometrical objects) which satisfy the condition: for any pair of cylinders 7, 
~' from the collection, there exists a sequence of cylinders 71,--., 7~ from the 
same collection such that 7~ = 7, ~ = 7' and 7j is inconsistent with ~j+ ~ for 
any j = 1,..., s - 1. 

Therefore, for writing a convergent polymer expansion for log Z(~)(V), 
it suffices to expand the quantity 

z(k)( V] 
log Z~*)(V) - log Z~)(V) = log 

zTo'tv) 
(2.15) 

Furthermore, to write down a polymer expansion for (2.15), we have 
to write (and to investigate) a cluster representation for the ratio 

z(k)(v) 
z~Iv) (2.16) 

We shall treat the ratio (2.16) as a probability Pv(Ak, m), where 
Pv = r~,v.(O) is the Gibbs measure for the standard SOS model in the volume 
V with the zero boundary condition, and the event Ak, m is given by 

Ak.m = c~: (~x-- ~-~ 2 , x ~ V  (2.17) 

Given a wedding cake n with 11(Tz)+k/21 <~m/2-[kt/2 + 1, it is con- 
venient to introduce an event A(~). Namely, we say that a wedding cake 7z 
is external (on a surface ~b where it lives) if, for any horizontal surface 
(0x = const, x ~ V) which has a nonempty intersection with z, the contour 
'7 of a (unique) cylinder 7 from z which intersects the surface t) is an 
external one in the whole collection of contours being bases for those 
cylinders of the surface ~b which have nonempty intersection with ~. We set 
then 

A(.) = {~b: the wedding cake n is living on the surface ~b 
and moreover, n is external on q~ } 
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Denoting by g~ the indicator function of A~, we can write, in conven- 
tional notations, 

Pv(Ak, m)=Pv(~ (1-Z~)) (2.18) 

where the product is taken over all possible wedding cakes ff over V with 
II('~)+k/21 =m/2-Ikl/2+ 1 and with a unique maximally-internal con- 
tour. After expanding the product l-I~, we arrive at the quantity 

where the sum is extended to collections {~} of cakes which satisfy the 
aforementioned conditions and are consistent in the following sense. If we 
take the whole family of cylinders from all the cakes of our collection, then 
this family satisfies the consistency condition (see above). 

Such a collection {~} forms a surface which is composed of all the 
cylinders involved, and we can partition this surface into pairwise "dis- 
joint" wedding cakes g, but already without the condition of uniqueness of 
a maximally-internal contour. Notice, however, that any such cake rc may 
be decomposed, in a unique way, into a union of cakes having only one 
maximaly-internal contour. This allows us to write 

Pv(~ (--1) ~{~) l~I z~) = ~ ( - 1 )  ~{~} Pv(z{~}) (2.19) 

the sum in the rhs of (2.19) is taken over all collections of pairwise disjoint 
wedding cakes zc with ]/(re)+ k/21 = m/2- Ikl/2 + 1, ~s {re} denotes the total 
number of maximally-internal contours in the collection {~}, and Z{,} is 
the indicator of the corresponding surface. 

We shall treat the rhs of (2.19) as a "partition function" for a model 
of interacting wedding cakes. We can use again the polymer expansion for 
the standard SOS model and write 

Pv(Z{,~}) = I~ Pz"(zt) Q v({Zt}) (2.20) 

where log Q v({Z}) is the sum of a convergent polymer series arising from 
the expansion for log (o) Zoo (V). Notice that each polymer contributing to 
log Q v({n}) binds at least two wedding cakes from {zt}. 

The polymer series for log Q v({Tr}) is of the form 

log Q v({~z))=~ w(q) (2.2i) 
q 
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where q is a polymer of cylinders. We notice that the polymers q are from 
the standard SOS model, and the weight w(q) admits the bound 

where 

and 1/71[ is given by (2.2). 
The "canonic" formula 

Iw(q)l ~<exp[- ( /~-c)Hql l ]  (2.22) 

exp[w(q)] = 1 + #(q) 

allows us to obtain a cluster representation 

Pv(Ak.m) = ~ 1-[ W(F)  (2.24) 
{r} r 

Here F is a "connected multicake," i.e., a collection of consistent wedding 
cakes which are connected by a collection of polymers q, and the weight 
W(F)  reads 

W ( F ) =  l-[ Pz,(~) l-I # ( q ) ( - 1 )  ~'~} (2.25) 
reEF qc .F  

[see (2.19), (2.20)]. We notice that any one-cake F contains no polymer, 
and hence in this case, 

W(F)  = Pz,(Z)( -7 1)~'{~} (2.26) 

Due to the imposed restriction tk[ < m/3 and the condition (2.4), we 
get the bound 

) diam ~Te(~) ~> - p k l + l  (10my) -1 

+ 10o,-  

Therefore, we can apply Lemma 2.3 ensuring that the bound (2.8) holds for 
the statistical weight w(r~) [see (2.7)]. The next remark is that Pzv(~) does 
not exceed w(~). Hence, the same bound holds for Pz~(~), too: 

The sum in the lhs is extended to the same objects as in (2.8). 

Ilqll = ~ I1~11 (2.23) 
7Eq 
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The estimates (2.8) and (2.27) enable us to pass to a standard polymer 
expansion for 

log Pv(AK, m) = log Z~k)(V) - log Z~)(V) (2.28) 

It is convenient to extract, from the whole polymer sum which gives the 
value log Pv(Ak, m), a quantity A v,~,m. The quantity A v.k,m is defined as the 
sum of the contributions of those polymers which include precisely one 
connected multicake which contains just a single cake which has a unique 
maximally-internal contour which, finally, is a unit one (i.e., the boundary 
of a unit plaquette of Z~). These "elementary" polymers are obviously iden- 
tified with wedding cakes rt having the properties just listed and are 
denoted in the sequel as [~].  

Notice once more that all the constructions performed so far are valid 
for k -- 0 as well. This is also the case of Proposition 2.7 below. 

P r o p o s i t i o n  2.7. The following bound holds true: 

IlOgPv(Ak, m)--Av, k,m] <~ ]VIe (fl--c)(m/2)(4v 1) (2.29) 

Proof of Proposition 2.7. The contribution of those polymers which 
include more than one connected multicake does not exceed 

IjVI exp [ -2 ( f l - c )  22v ] (2.30) 

This follows from the fact that (a) the statistical weight of such a polymer 
contains at least two factors Pz~(~tj) corresponding to cakes zj, and any 
such factor is ~<exp[-f i(m/2)  2v], and (b) the number of polymers of a 
given size grows exponentially with the size [this leads to the presence of 
the constant e in (2.30)]. 

Next, the contribution of those polymers which include just one 
connected multicake but contain more than one cake is estimated again by 
(2.30) due to the same kind of argument. 

Further, consider the contribution of those polymers which include 
just one connected multicake containing a single cake which has more than 
one maximally-internal contour. The statistical weight of any such polymer 
is bounded from above by exp [ -2 f l (m /2 )2v ] ,  and their contribution is, as 
before, not greater than (2.30). 

Finally, we have to analyze the contribution of those polymers which 
are reduced to one wedding cake with a unique maximally-internal contour 
which, however, is not unit (i.e., is not reduced to the boundary of a unit 
plaquette of ZV). The statistical weight of any such polymer does not 
exceed e x p [ - f l ( m / 2 ) ( 4 v -  1)]. The bound (2.29) now follows immediately. 
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We can now write 

log Z(~(V) - log Z(~ 

l o g Z ( k ~ ( V ) _ l o g Z ~ ( V ) + l o g  (o) = Zoo ( V ) - l o g Z ( ~  (2.31) 

Due to Proposition 2.7, 

log z(k)(v)--  log (0t Z ~  (V) = A v,k,m + 6k (2.32) 

- l o g  Z~)(V) + log Z(~ V) = A v,O,m + 60 (2.33) 

where 

16ol + I~ki ~ I VI e (~-c)(m/2)(4v 1) (2.34) 

The final step in the proof of Lemma 2.2 for 0 < Ik[ < rn/3 is to compare the 
quantities A v,k,,, and A V,O,m" 

P r o p o s i t i o n  2.8. The following bound holds true: 

A V,k,,, -- 3 v,O,m <<- --�89 I V] e -~(m/2)2v (2.35) 

Proo f  o f  Proposi t ion 2.8. By definition, 

A v,k,m = - ~ Pz~(~) (2.36) 

where II(~)+kl = m / 2 +  1. A similar formula (with k replaced by zero) 
holds for A v,0,m" 

We see that for any polymer [~] (or, equivalently, wedding cake g) 
contributing either to Av,~,m or to A V,O,m, the absolute value rl(z)l can take 
three values only: m / 2 - l k l + l ,  m / 2 + l ,  and m / 2 + l k l + l .  For any 
wedding cake ~ with ] l ( ~ ) l - r n / 2 - [ k l + l ,  three associated cakes, 
~l=rcl(~)  and 7I"2(~ ) with [ l ( r q ) l = l l ( T r 2 ) l = m / 2 + l  and T['3:7~3(~ ) with 
II(n)[ -- m/2 + Ik{ + 1, give contributions either to A v,k,m or to 3 v,O,m : Z and 
7t3 contribute to A V,k,m and zl and z2 to A v,O,m. Geometrically, all the n~ 
are obtained from ~ after increasing the absolute value of the length of the 
maximally-internal cylinder: in the case of ~1 and ~2 by ak[, and in the case 
of 7r 3 by 2 Jkl. Therefore, 

e z v ( / z l )  = Pzv(rt2) ~< P v ( ~ )  e -~lkl2v (2.37) 

Pzv(Tc3) ~ Pz~(n) e -2t/fkl2v (2.38) 
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N o w ,  

3v, k.m-- dv, o,,. = ~ [ - P z ~ ( n )  + Pz,,(n~) 
[~z]: ]l(7:)] = rn/2 ]k] + i 

+ Pz~(Tr2) -- Pzv(Tr3) ] 

1 
- Z 

[Tr]zll(~z)l = m/2 ]kl + 1 

(2.39) 

The rhs of (2.39) will increase if we reduce the summation to those wedding 
cakes ~ for which the maximally-external contour ~e(~) is merely a unit one 
(in which case it will be in fact the unique contour of lr). For  any such 
cake 7r 

pzv(~z) >~ �89 e /~(,~/2- Ikh + 1)2u 

This leads to the upper bound 

Z]V,k,m__ AV, O,m ~ __1 ]V I e fl(m/Z-kkL+ l)Zv (2.40) 

which finishes the proof of Proposition 2.8. 

Bounds (2.34) and (2.40) complete the proof of Lemma 2.2 for the case 
of an even m. The case of an odd m is considered in a similar way. 

3. DERIVATION OF T H E O R E M  2.1 FROM THE 
BASIC EST IMATE 

As mentioned before, the proof of Theorem 2.1 which follows presents 
a concrete version of a theory of DGSs. We want to point out once more 
that, in all the steps of our proof, the bounds used are uniform in m. 

As before, we start with the case of an even m. The proof is naturally 
divided into two (interconnected) parts: the proof of existence of Gibbs 
states indicated in Theorem 2.1 and that of uniqueness thereof. Let us begin 
with the proof of existence. 

Consider the partition function Z(V) of our model in a volume V with 
the zero boundary condition ~b~~ We can write the following represen- 
tation: 

Z(V)=- y~ Y, (~,(v~ e x p [ - / J H ( ~ ( V ) ) ]  
r  0 ( v )  

x exp{ -/~ r H(~b(V)) - H(~,( V))] } (3.1) 

The external sum is taken here over the surfaces ~(V) with the boundary 
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condition qt(~ V c) such that for any vertical cylinder 7 of ~p(V) the estimate 
opposite to (2.4) is fulfilled, 

m 2 diam ~ > 10 ~- v (3.2) 

Such a surface t) is called in the sequel a factor-surface. The internal sum 
~2 (~(v)~ is extended to surfaces ~b which: (a) contain all the cylinders of ~, 
and (b) can contain, in addition, other cylinders 7 which obey (2.4). 

Let us now introduce the notion of a factor-contour. Given a factor 
surface tp, we extract connected components S [ =  S(O)] of the set 
{x E V: ~Px r 0} and consider the restrictions of ~ to those connected com- 
ponents. A single restriction is called a factor-contour of a factor-surface 
and denoted f2 [-= f2(O)] and the corresponding connected component 
S [ =  S(t'2)] of the set {x~ V: ~x~0}  is called the support off2. 

As a "subsurface" of a surface ~, a factor-contour t2 is composed of its 
vertical cylinders 7i=Ti(Q) which satisfy the consistency condition (see 
above). Notice that, among cylinders forming a factor-contour surface f2, 
there is a unique maximally-external one, 7e(f2), for which the basic con- 
tour ~e(f2) is the maximally-external one among the contours being the 
bases for cylinders of O. On the other hand, there can exist (in general, 
several) maximally-internal cylinders, (J) 7int(g'2), whose basic contours, 
~(j) 
7int(~), separate S(~2) from its complement [there can exist as well maxi- 
mally-internal cylinders without this property, whose basic contours lie 
inside Sff2) ]. 

The partition function Z admits the representation 

where 

re(V)= ~ Z(V, tp)exp[-flHOp(V))] 
O ( v )  

(3.3) 

m/2 

Z(V, ~ ) =  I ]  Z(~')(Vk) (3.4) 
k = - -m/2  

v(k)= v(k)(~O) denotes the set {x~ V: ~x=k}  and Z(~')(V (k)) is the parti- 
tion function in the volume V (k) with the boundary condition induced by 
the factor surface ~O. 

As usual, to prove the existence of a Gibbs state generated by the zero 
boundary condition, we have to construct the polymer expansion for 
log 3(V). In fact, it is sufficient to construct a polymer expansion for the 
factor model, i.e., to expand the quantity 

log ( Z ( V )  "] = log Z ( V ) - l o g  Z(~ (3.5) t,z(~ 

822/64/1-2-9 
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because log Z(~ was expanded in the course of proving Lemma 2.2 for 
I J] < m/3. 

The quantity (3.5) may be written as 

l o g f ~  Z(V,~) t o(v) Z(~ exp[ -fl(H(O( V))] (3.6) 

or, equivalently, in the factor-contour form, 

log ~ l-I w((2) Q({(2}) (3.7) 
(2 Q 

The sum is taken here over all collections of consistent factor-contours [the 
consistency means simply that the supports S(f2) are pairwise disjoint]. 
Further, the statistical weight w(O) of a factor-contour (2 reads 

FIk Z~k)( S~k)(O ) ) 
w(n)=exp[-~H(n)] z~O)(S(O)) (3.8) 

and the quantity Q({f2}) gives the interaction between the factor-contours 
f2: 

H~ z~~ s( o ) ) z~~ v \  (U ~s(  o ) ) ) 
Q({s = Z~O)(v ) (3.9) 

The domains S~k)((2) in the rhs of (3.8) are defined in the same way as 
V~*)(~): S~k)((2)= {xeS(f2): (2x=k }. The term exp[-flH(O)] may be 
written in the following obvious form: 

exp[-flH(s = 1-[ w(7(s (3.10) 
~(~) 

where the product is taken over all cylinders 7(f2) of the factor-contour f2 
and the statistical weight w(7) is defined in (2.1). Notice, for further use, 
that, by construction, cylinders 7(0) satisfy the condition (3.2). 

The quantity log Q({12 }) admits a convergent polymer expansion [of 
a similar form as the expansion (2.21)1. More precisely, we have in mind 
the polymer expansion for Z~~ which was constructed in the proof of 
Lemma 2.2 for [kl < m/3. This enables us to write the representation of the 
"partition function" 

3(V) = Z 1-[ w(t2)Q({f2}) (3.11) 
z~~ ~ 

in terms of noninteracting (=  nonintersecting) clusters of factor contours. 
It is a standard (but tremendous) construction (see, e.g., refs. 11 and 12) 
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and we omit the details from this paper (notme that a similar approach, 
namely, the multicake construction, was already used in Section 2). 

We now have to pass from the aforementioned cluster factor-contour 
representation for (3.9) to the convergent polymer expansion for 
log[~=(V)/Z(~ The crucial point here is the following result. 

L e m m a  3.1. The following bound holds true: 

w(f2)exp[lS(f2)lexp(-5f122v)<~exp(-5f122v ) (3.12) 
~: ;~e (g2)  ~ 0 

The sum in (3.12) is extended to those factor-contours (2 for which the 
maximally-external contour ~Te(g2) passes through the origin of the dual 
lattice ~;v. 

To derive the convergence of the polymer expansion under considera- 
tion from Lemma 3.1, it suffices to use the general criterion from ref. 13. 
Furthermore, convergence of the polymer expansion for log[~( V)/Zm~( V)] 
implies, in the standard way, existence of the limit Gibbs state under dis- 
cussion. Hence, the problem of existence is reduced to proving Lemma 3.1. 

Proof of/emma 3.1. The statistical weight w(f2) satisfies the bound 

The product is taken here over all cylinders of a factor-contour f2 and w(?) 
is given, as before, by (2.2). The bound (3.13) follows immediately from 
Lemma 2.2 and the definition (3.8). 

The problem of proving (3.12) is reduced to proving the bound: for 
any fixed cylinder 7 

w(f2) exp I IS(f2)I exp(-f1522v)l<~w(? ) (3.14) 
Q:?~ (~ 2 )  = 7 

The sum in the lhs of (3.12) is taken over all factor-contours f2 for which 
the maximally-external cylinder 7e(f2) coincides with 7. In fact, the sum 
(3.12) equals 

~ w(g2)exp[[S(g2)lexp(-f1522v)] 
y : ~ O  -c2: ~,e(.C2) = y 

<~ 2 w(f2)<~ ~ exp[(-fl-c')n? 
7 : ~ 0  n - -  l O m v  

~< exp [ ( - f l  - c) 10rnv] ~< exp(-flSmv) 
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Let us now check (3.14). By using (3.13), we have to prove that 

E ( ~ [I w(7(~))exp - ~]S(~)l  exp - ~  2v ~<w(7) (3.15) 
~2:ye(~) = ~, ~(O) 

To estimate the sum in the lhs of (3.15), we llX a family of maximally- 
internal cylinders {?(J)} and consider the sum 

1-I w(Y(~))exp [ -  2 lS(~)t exp(-flmv) ] 

= exp - ~ [S(7, {~(J)})[ exp( -~mv)  w(7) H w(7 (J)) 
J 

x ~ H *  w(7(g2)) (3.]6) 
o :~e (o )  = ~, (7}~(0)} = (~J'} 7 (0)  

where S(~, {~(J)}) is the domain (on the lattice Z ~) between the maximally- 
external contour ~ and the maximally-internal contours ~(J), and the 
product I ]*  is taken over all cylinders of a factor-surface O which are 
different from "extremal" cylinders 7 and 7 ~j). Since the bases of all these 
cylinders satisfy the restriction (3.2) and are situated inside the support 
S(7, {~(J)}), the following bound holds true: 

Y I]* w( Ia)) 

~< exp [4  ,S(~, {~(J)}),exp(-flrnv)l (3.17) 

Next, we perform the summation, for a fixed cylinder 7, over all cylin- 
ders ~(i). We use the so-called Zahradnik trick (see ref. 14). Given a positive 
d; consider an auxiliary partition function Z'd(V) corresponding to the 
ensemble of surfaces with the zero boundary condition and with the restric- 
tion that for any cylinder 7 of our surface its basic contour ~7 obeys diam 
~ > d :  

= 1] (3.18) 

The sum in the rhs of (3.18) is extended to consistent collections of 
cylinders with the aforementioned property. 

Proposition 3.2. 5 For any finite volume V ' = Z  ~ the following 
bound holds true: 

1-Iv Z'a(S(~)) w(7) ~< 1 (3.19) 
(~c~ Z'a(V') 

5 P r o p o s i t i o n  3.2 is a p a r t i c u l a r  ca se  o f  a m o r e  g e n e r a l  a s s e r t i on  f r o m  ref. 8. 
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Here, S(~) is the interior of a contour ~ (which is the base for a cylinder 
~) and the sum in the rhs of (3.19) is taken over collections {7} (e) of 
mutually-external cylinders inside the volume V'. 

The proof of Proposition 3.2 is immediate: as follows from the defini- 
tion (3.18) and from the restrictions determining the domain of summation 
in (3.19), 

t t 1-[ zs(s(~)) w(~l).~z.(v ) 

Indeed, the restrictions defining the sum in the rhs are more liberal than 
those in the lhs. 

Returning to the proof of Lemma3.1, we can write, in light of 
Proposition 3.2, 

2 exp - IS(f, {7(J)})l exp(- f imv)  I]  w(7 (j)) 
{r J 

2 1-[j Z'd(S(~J))) w(7 ~j)) ~< 1 (3.20) 

The sum ~{r is performed here over collections of maximally-internal 
cylinders whose contours form the internal boundary of S(Y2), and the 
value d in the rhs of (3.20) is taken to be equal to lOmv. 

Substituting (3.20) and (3.17) in (3.16), we arrive at the bound (3.15). 
This finishes the proof of existence of the limit Gibbs state with the zero 
boundary condition. 

Let us now turn to the question of uniqueness. The uniqueness of the 
limit Gibbs state which was constructed before follows in the standard way 
from Lemma 3.3 below. Consider the Gibbs ensemble of surfaces, in a 
volume V which is now supposed to be a cube with center at the origin and 
with edges parallel to coordinate axes, and with an arbitrary boundary 
condition ~(VC). Given an r > 1, denote by By, r the event that there exists 
a collection of contours {f(J)} satisfying the twofold conditions: (i) the 
contours ~(J) encircle a volume V(r) C V such that t V\V(r)] >~2rvl(V) "-1 
[by I(V) we denote here and below the length of the edge of the cube V], 
and (ii) q~x = 0 for any j and any point x from the interior of the contour 
~7 ~j) which adjoins f(J). 

Recall that the value of fl is supposed to be large enough, but does not 
depend on m as well as all the constants appearing in the course of the 
proof. 

Lemma 3.3. For any r>cfie B(m/2)2v and any (even) m, the 
following relation holds: 

lira sup P(vC)(CBv, r)=O (3.21) 
/ ( v )  ~ oo r  v ~) 
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where P~) denotes the probability distribution of the Gibbs ensemble 
under consideration and CBv, r is the complement of the event Bv, r. 

Proof of Lemma 3.3. Dealing with arbitrary boundary conditions, it 
is convenient to introduce the notion of a "boundary picture." By this 
we mean the whole family ]cb of the factor contours E2 with the supports 
S((2) adjoining the boundary 3V. We shall treat this family as a sort of 
factor-contour with the maximally-external contour ~e(]Cb)=OV. We 
should notice that certain contours ~'intk~(J)g~fb!~ separating the support 
S(Yb) = [.)Q~ r~ S(~2) from the set V(~ {x~ V: ~bx=0 } can adjoin the 
boundary ~V. Further, the part of 0V which attaches the zero portion of 
the boundary condition must be adjoined by some contours ~7}~(Yb). 
Moreover, certain contours ~(J)t]cb) may appear partially "glued" so that ~int~ 
some of their plaquettes are counted twice and the interiors of those 
contours fail to be connected. 

Dealing with the Gibbs ensemble corresponding to the boundary con- 
dition ~b(VC), we must attribute to a boundary picture ]cb the statistical 
weight 

W(]Cb) = [W(Te(~,-b))]-1 H w(Y(]cb)) 
~( Zb):'/()~b) ~ 7e(i-b) 

FIk Z(~)(S(~)( ~ )  ) 
x Z(~ (3.22) 

[cf. the definition (3.8) of the statistical weight for a "standard" (zero- 
boundary-condition) contour]. 

We notice that the event CBv,~ means the following property of a 
boundary picture: 

IS(]ca)t = ~ Is(~)l >~2rv[l(V)] ~ 1 

Let us now estimate from above the probability 

P~)({ [ S( ]ca)[ >~ 2rv [/( V)] ~- 1}) (3.23) 

It does not exceed 

E 
Tb: [S(Tb)[ ~> 2rv[l( V ) ]  v 1 

• H 
7(rb):,~(rb) ~ 0V 

(3.24) 

This follows from the following three facts. (a) The probability of a 
boundary picture ]cb does not exceed its statistical weight (3.22). (b) The 
statistical weight of a boundary picture ]c b under a boundary condition 
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~b(V c) is obtained from its statistical weight under the zero boundary condi- 
tion ~b(~ c) by multiplication by [w(Te(/'-b))] -2 (since, for a nonzero 
boundary condition, those plaquettes which are projected on the boundary 
~V do not give any contribution to the statistical weight of •b). (C) By 
virtue of Lemma 2.2, the quantity 

E ( m)] l-I w(~()~b))exp - c  Is(/~b)l exp - / ~ - 2 v  
7(r0) 

gives an upper bound for the statistical weight of a boundary picture rb 
under the zero boundary condition. 

Now notice that the sum (3.24) does not exceed, for r >~ cfle '~(m/z)zv, 

~ exp{-2v[ l (V) ]  v 1 ~} (3.25) 

Indeed, the first factor in the lhs of (3.25) is merely 

max[w(~e(/~b))]-1 exp(/~ I~VI) 

As to the second factor, it is the upper bound for 

max exp - - I S ( r ~ ) l  exp - ~ - 2 v  
IS( iCb)l >~ 2 r v [ l (  V)~ v -  1 C 

• lq W(7(rb)) 
/ %  ~e(:Cb) -- 3 V, IS(/~b)l >~ 2rv [ l (  V ) ]  v -  I y(/~b): Y(2rb) :r c3 V 

The key remark here is that the last sum is >~ 1; this may be checked in the 
same way as in the course of deriving (3.20). This finishes the proof of 
Lemma 3.3. 

Therefore, all the assertions of Theorem 2.1 related to an even m are 
proven. 

The analysis of the structure of the space-periodic pure Gibbs states 
for the case of an odd m follows, again in the standard way, from 
Lemma 3.4 below, which is a counterpart of Lemma 3.3 for the case under 
consideration. Keeping in mind the same assumptions on a volume V as 
before, we denote now by Bar  the event that there exists a collection of 
contours {~(J)} satisfying the above conditions (i) and (ii) with only the 
following change: instead of qlx=0 in (ii), we require that ~x = _+1/2. 
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L e m m a  3 . 4 .  The  asse r t ion  of  L e m m a  3.3 ho lds  in the s i t ua t ion  of  

an  o d d  m wi th  the c h a n g e  ju s t  out l ined .  

T h e  p r o o f  of  L e m m a  3.4 repea ts  t ha t  of  L e m m a  3.4 and  we o m i t  it. 
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